On Discovering Deterministic Relationships in Multi-Label Learning via Linked Open Data
نویسندگان
چکیده
In multi-label learning, each instance can be related with one or more binary target variables. Multi-label learning problems are commonly found in many applications, e.g. in text classification where a news article is possible to be both on politics and finance. The main motivation of multi-label learning algorithms is the exploitation of label dependencies in order to improve prediction accuracy. In this paper, we present ongoing work on a method that uses the linked open data cloud to detect relationships between labels, enriches the set of labels with new concepts which are super classes of two or more labels, trains a model on the enhanced training set and finally, makes predictions on the enhanced test set in order to improve the prediction accuracy of the initial labels.
منابع مشابه
Discovering and Exploiting Entailment Relationships in Multi-Label Learning
This work presents a sound probabilistic method for enforcing adherence of the marginal probabilities of a multi-label model to automatically discovered deterministic relationships among labels. In particular we focus on discovering two kinds of relationships among the labels. The first one concerns pairwise positive entailment: pairs of labels, where the presence of one implies the presence of...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملOne-Shot Learning with Bayesian Networks
Humans often make accurate inferences given a single exposure to a novel situation. Some of these inferences can be achieved by discovering and using near-deterministic relationships between attributes. Approaches based on Bayesian networks are good at discovering and using soft probabilistic relationships between attributes, but typically fail to identify and exploit near-deterministic relatio...
متن کاملFast Multi-Instance Multi-Label Learning
In multi-instance multi-label learning (MIML), one object is represented by multiple instances and simultaneously associated with multiple labels. Existing MIML approaches have been found useful in many applications; however, most of them can only handle moderatesized data. To efficiently handle large data sets, we propose the MIMLfast approach, which first constructs a low-dimensional subspace...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015